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The blackbody nature of the cosmic microwave background (CMB) radiation spectrum is used
in a modern test of the Copernican Principle. The reionized universe serves as a mirror to reflect
CMB photons, thereby permitting a view of ourselves and the local gravitational potential. By
comparing with measurements of the CMB spectrum, a limit is placed on the possibility that we
occupy a privileged location, residing at the center of a large void. The Hubble diagram inferred
from lines-of-sight originating at the center of the void may be misinterpreted to indicate cosmic
acceleration. Current limits on spectral distortions are shown to exclude the largest voids which
mimic cosmic acceleration. More sensitive measurements of the CMB spectrum could prove the
existence of such a void or confirm the validity of the Copernican Principle.

Introduction: The observed accelerating expansion of
the universe [1, 2] poses deep questions for cosmology. Is
the universe filled by some new, exotic dark energy, or is
one of the basic tenets of the standard model of cosmol-
ogy invalid? One such tenet is the Cosmological Prin-
ciple, the assumption of approximate homogeneity and
isotropy of matter and radiation throughout the universe.
The Cosmological Principle is known to be partly satis-
fied. The universe is observed to be very nearly isotropic
on our celestial sphere, on the basis of the near-isotropy
of the CMB temperature pattern [3]. The universe is
observed to be approximately homogeneous across the
distances probed by large-scale structures [4]. Yet, ra-
dial homogeneity on cosmic scales >∼ 1 Gpc remains to be
proven. If the assumption of radial homogeneity is re-
laxed, and if we observe from a preferred vantage point,
then it may be possible to explain the apparent cosmic
acceleration in terms of a peculiar distribution of matter
centered upon our location [5]. In fact, models of the
universe consisting of a spherically-symmetric distribu-
tion of matter, mathematically described by a Lemaitre-
Tolman-Bondi spacetime [6], have been shown to pro-
duce a Hubble diagram which is consistent with observa-
tions. These models require no cosmological constant or
other form of dark energy, and locally resemble a matter-
dominated low-density universe or void. The observed
near-isotropy constrains us to occupy a very special loca-
tion, at or near the center of the void, in violation of the
Copernican Principle. Although the Copernican Princi-
ple may be widely accepted by fiat, it is imperative that
such a foundational principle be proven.

We propose a test of the Copernican Principle, to
verify radial homogeneity and thereby constrain non-
accelerating void cosmological models. The test relies
on a previously under-appreciated effect: the mixture of
anisotropic CMB radiation through scattering leads to
distortions of the blackbody spectrum [7]. The CMB is
initially thermal (blackbody), but small inhomogeneities
cause variations in the temperature at different locations
and along different lines-of-sight that preserve the black-

body spectrum. However, scattering of this anisotropic
radiation into our line-of-sight by ionized gas produces
observable spectral distortions. This allows us to indi-
rectly detect large anisotropies in other parts of the uni-
verse.

Here we are interested in anisotropies caused by a
large, local void. Such a structure causes ionized gas
to move outward, in motion relative to the CMB frame
which leads to a Doppler anisotropy in the gas frame.
The gravitational potential of such a structure also leads
to a Sachs-Wolfe (SW) effect for photons which originate
inside of the void and scatter back toward us. The ge-
ometry of these effects is illustrated in fig. 1. A large
void, or any other non-Copernican structure, will lead to
large anisotropies in other places which will be reflected
back at us in the form of spectral distortions. Hence,
deviations from a blackbody spectrum can indicate a vi-
olation of the Copernican Principle. In essence, we use
the reionized universe as a mirror to look at ourselves in
CMB light. If we see ourselves in the the mirror it is
because ours is a privileged location. If we see nothing
in the mirror, then the Copernican Principle is upheld.

Spectral Distortions: The distortion of the CMB black-
body spectrum due to scattering by anisotropic CMB ra-
diation is [7] u[n̂] = 3

16π

∫ ∞
0

dz dτ
dz

∫

d2
n̂
′
(

1 + (n̂ · n̂′)2
)

×
(

∆T
T [n̂, n̂, z] − ∆T

T [n̂′, n̂, z]
)2

, where ∆T/T [n̂′, n̂, z] is
the CMB temperature anisotropy in the direction n̂

′, as
observed at redshift z in the direction n̂ from the cen-
tral observer, and τ is the optical depth. For cosmic
voids extending out to redshifts z <∼ 1, reflections back
at us may occur up to z <∼ 3 (see fig. 1). The optical
depth to Thomson scattering is small, so that it is ap-
propriate to consider single scattering. Since the mean
CMB temperature is not known a priori, but rather is
fit to the observations, u is observationally degenerate
with the Compton y-distortion parameter according to
the relation u = 2y. (Compare Refs. [7, 8] for details.)
Thus observational constraints on 2y can can be treated
as constraints on u.
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FIG. 1: Illustrated is a cross-section through a model universe
with the observer (O) at the center of a void, in violation of
the Copernican Principle. CMB photons traveling in any di-
rection may Thomson scatter off reionized gas toward the ob-
server. The final spectrum of the observed light will be a mix-
ture of blackbody spectra with different (anisotropic) temper-
tures, producing a distorted blackbody. The yellow lines rep-
resent: incoming beams of unscattered, primary CMB pho-
tons (dashed); incoming beams of scattered photons (thin),
and the observed beams (thick) for representative scattering
centers with last scattering surfaces represented by the dark
circles. A is in the Doppler zone: Beams 1-3 experience the
same SW temperature shift, introducing no anisotropy. How-
ever, gradients in the void gravitational potential cause the
gas to move with respect to the CMB frame, so A sees a differ-
ential Doppler anisotropy, resulting in spectral distortions. B
is in the reflection zone: B is at rest with respect to the CMB
frame and sees no Doppler anisotropy. However, some of the
incoming photons, e.g. beam 4, originate inside the void so
there will be an anisotropic SW temperature shift, leading to
spectral distortions.

We consider a low-amplitude void embedded in a flat,
Einstein-deSitter (EdS or Ω = 1) matter-dominated uni-
verse. The gravitational potential due to the void, Φ[x],
is a function of comoving position, x, with Earth near
x = 0. The temperature anisotropy can be divided into
a Sachs-Wolfe and Doppler term ∆T

T [n̂′, n̂, z] = ∆T
T |SW +

∆T
T |Doppler where ∆T

T |SW = 1
3c2 (Φ[xrec] − Φ[xscatter])

and ∆T
T |Doppler = 2

3 n̂
′ · ∇xΦ[xscatter]/c H0

√
1 + z, where

xscatter = Dco
A [z] n̂, xrec = xscatter+(Dco

A [zrec]−Dco
A [z])n̂′,

Dco
A [z] = 2 c

He0

(

1 − 1√
1+z

)

. Here Dco
A is the comoving

angular diameter distance, and the redshift of recombi-
nation, zrec, will be approximated by ∞ for simplicity.
The Hubble constant at the present time in the back-
ground cosmology, outside the void, is He0, whereas H0

is the larger, present-day Hubble constant at the center

of the void.

We neglect the integrated Sachs-Wolfe (ISW) effect,
meaning that a CMB photon does not contribute to the
u-distortion simply because it passes across the void.
This approximation is justified for a low-amplitude void
in the EdS background where the ISW is a second-order
effect. As Ω deviates from unity and/or the void ampli-
tude becomes non-linear we expect a larger ISW contri-
bution to the anisotropy and thus to the spectral distor-
tion, but we do not expect that the ISW will ever be the
dominant contributor to u for the small voids needed to
mimic an accelerating universe.

The run of optical depth with redshift is taken from
the unperturbed, background cosmology. We assume
a rapid reionization at z = zrei such that dτ

dz =

τ ′
e0

√
1 + z Θ[zrei−z] τ ′

e0 = 3He0Ωb0σTc
8πGmH

(

1 − 1
2YHe

)

, where
Θ[x] is the Lorentz-Heaviside step function, σT, mH, Ωb0,
and YHe are the Thomson cross-section, the hydrogen
mass, the current baryonic mass density in units of the
critical density, and the helium mass fraction, respec-
tively. We use Ωb0h

2 = 0.022 (h ≡ He0/100km/s/Mpc),
YHe = 0.24. For H0 we use the locally-measured ex-
pansion rate: 73 km/s/Mpc (e.g. Refs. [9, 10]). Where
needed we use the WMAP3 [11] value, τobs = 0.9, for
the optical depth to the surface of last-scattering which
in our model gives zrei = 11. These numbers specify the
cosmic evolution of the density of scatterers.

We assume spherical symmetry for the local void. Con-
sequently, the gravitational potential is Φ[x] = Φ[R =
|x|], where R is the comoving radial distance from Earth.
The temperature anisotropy ∆T/T depends on the direc-
tions n̂ and n̂

′ only through the combination n̂ ·n̂′, which
leaves u n̂-independent. Thus the final result is a single
number, the u-distortion at Earth, which can be trans-
lated into a limit on any local spherical inhomogeneity.

Void Model: We cannot compute u for every possible
void profile, so we focus our attention on a particularly
simple, two parameter class of voids, sometimes known as

a Hubble bubble: Φ[R] = Φ0

(

1 − R2

R2

V

)

Θ[RV − R]. The

parameters Φ0, RV give the void amplitude and comov-
ing radius. The reason it is called a Hubble bubble is
that the Hubble parameter is uniform inside and outside
the void, but the values differ. Nonlinear growth leads to
the appearance of a shell of mass overdensity which com-
pensates the underdensity in the void at the boundary
of the outer and inner region. This compensating shell
has a complicated density and velocity structure, which
is safely ignored in linear theory. Away from the com-
pensating shell this model resembles an open (Ω0 < 1)
FRW cosmology embedded inside a flat EdS cosmology.
Any smooth spherical void which is asymptotically EdS
at large R and has finite density in the center can be
thought of in this way; what differs is the radial profile
of the transition between the two FRW spacetimes. The
Hubble bubble is the limit of a sharp transition between
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FIG. 2: The dependence of the spectral distortion, u, on the
size of a Hubble bubble parameterized by zedge, is shown in
units of uscale ≡ τ ′

e0 (Φ0/(3c2))2(1 + zedge)/(
√

1 + zedge − 1).
The thick curves show the various contributions to u. The
dashed curves correspond to the case in which zrei → ∞. For
small voids the Doppler contribution dominates, and the value
of zrei is unimportant.

the interior and exterior regions.

The Hubble bubble amplitude can be expressed in
terms of the present-day density parameter, Ω0, inside

the void as Φ0 = 3
20 (He0RV)2

[

(1−Ω0)
3/2

Ω0

H0

He0

]2/3

. Next,

the void radius can be expressed as a function of the red-
shift at the edge of the void, zedge. This relationship is
complicated by finite peculiar velocities and non-linear
clustering of the compensating shell, but to first order
is simply RV = 2(c/H0)(1 − 1/

√

1 + zedge). Finally, the
exterior Hubble parameter, He0, differs from the interior
value, H0. At the same “time since bang” they are re-

lated as H0

He0
= 3

2

√
1−Ω0−Ω0 sinh−1

hq

1−Ω0

Ω0

i

(1−Ω0)3/2
. Note that a

small jump in the Hubble parameter corresponds to a
large jump in the density parameter (see fig. 3).

The gas at different redshift must satisfy several crite-
ria in order to contribute to the u-distortion. A patch of
gas at redshift z must be ionized, on our past light cone,
and see an anisotropic ∆T from the void. We refer to the
region z > zrei as the neutral zone because the gas is not
ionized, producing no contribution to u. Even if the gas
is ionized, if z > zmax ≡ 3 + 4 zedge then the gas is not
in causal contact with the void so ∆T = 0. We refer to
the range (2

√
zmax + 1−1)/(

√
zmax + 1−1)2 ≤ z ≤ zmax

as the reflection zone; the last scattering surface of gas
in this range intersects the interior of the void so that,
depending on the scattering angle, some CMB photons
will reflect back towards us with anisotropy ∆TSW. Gas
which is on our past light cone and within the void will
see ∆TDoppler, which we call the Doppler zone.

Five classes of void sizes are identified depending on
how the different zones overlap (assuming zrei > 8):
small (zedge ≤ 5

4 ) whereby the neutral zone, reflection
zone, and Doppler zone are all disjoint; big (5

4 < zedge ≤

1
4 (zrei − 3)) whereby the Doppler zone and reflection
zones overlap, but neither overlap the neutral zone; large

(1
4 (zrei − 3) < zedge ≤ zrei) in which the Doppler and

reflection zones overlap, as do the reflection and neutral
zones, but the neutral zone does not overlap the Doppler
zone; huge (zedge > zrei) in which the neutral, reflec-
tion, and Doppler zones all overlap; and super-horizon

(RV > 2c/H0) for which the void encompasses the entire
observable universe. This classification is not restricted
to the Hubble bubble void profile, but applies to any void
profile with a sharp edge at z = zedge. As we shall see it
is only the small voids that can explain the current SNe
data.

In the linear perturbation approximation for this
void model the spectral distortion u is proportional
to ( 1

3c2 Φ0)
2τe0 and may be decomposed as u =

τe0

(

Φ0

3c2

)2
(UD + US + UDS) where the three terms are,

respectively, the contribution from gas where the temper-
ature anisotropies are Doppler only (subscript D), Sachs-
Wolfe only (subscript S), and a combination of the two
(subscript DS). All of these can be expressed analytically.
For small and big voids u does not depend on zrei but
only on the dimensionless size parameter r ≡ 1

2
H0

c RV =
1 − 1√

1+zV
. The general expression for u is long and we

do not give it here. For small voids, which are the most

relevant, we find U small
D = 28

5
1
r3

(

1 + 1
1−r + 2

r ln[1 − r]
)

and U small
S ≪ U small

D and U small
DS = 0.

The angular-diameter distance DA is a solution of
the Dyer-Roeder [12] equation, d

dz

(

(1 + z)2H d
dzDA

)

+
3
2ΩHDA = 0. In the interior open and exterior
flat cosmologies the respective solutions are DA[z <
zi] = 2c

H0
(2 − Ω0(1 − z) − (2 − Ω0)

√
1 + zΩ0)/(1 + z)2Ω2

0

and DA[z > ze] = 2c
H0

( C1

(1+z) + C2

(1+z)3/2
), where the co-

efficients C1, C2 are set by the continuity DA
int[zi] =

DA
ext[ze], and the jump in dDA/dz as determined by

integrating the Dyer-Roeder equation across the delta-
function density spike at the void edge. The radial ve-
locity drop, ∆v, at the void edge means a double-valued

DA[z] for z ∈ [ze, zi] and 1+zi

1+ze
=

√

c+∆v
c−∆v . This drop also

gives the Doppler anisotropy at the edge. To get zi and
ze we use the approximations ∆v

c = ∆T
T Doppler

[zedge, n̂, n̂]

and zedge = 1
2 (zi + ze). The luminosity distance versus

redshift, a.k.a. the Hubble diagram, is (1 + z)2 DA[z].
Constraints: The u-distortion is evaluated according

to the procedure described above. We are primarily in-
terested in small and big voids which extend out to z ∼ 1.
Hence our constraints are independent of zrei. The other
cosmological parameters only enter into the overall nor-
malization of u through τ ′

e0. What remains are the void,
size and amplitude: (zedge, Ω0).

The best current bound on u is due to FIRAS [13, 14,
15] which constrains y < 15 × 10−6 or u < 3 × 10−5

at 95% C.L.. The corresponding constraint on Hubble
bubble parameters are shown in fig. 3. Also shown are
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FIG. 3: The test of the Copernican Principle, in terms of con-
straints on the size and depth of a local, spherically-symmetric
void, is shown. The blue shaded regions show the range of pa-
rameters excluded by the u-distortion test, whereas the red
regions show the range of parameters compatible with the
current SNe Hubble diagram data.

constraints for projected bounds y < 10−6, 10−7. The
limits are expected to improve [16, 17], but a y-distortion
from the IGM would likely mask the signal discussed here
if u <∼ 10−6 [18].

The results rule out large voids with large density con-
trasts – the most egregious violations of the Coperni-
can Principle. The larger the void, the smaller the den-
sity contrast must be in order to pass the test. Al-
though not shown, the constraints become weaker for
huge (nearly super-horizon sized) voids. Since observa-
tionally Ω0 . 0.3, only small bubbles with zedge < 0.9
are allowed. Improving the constraint to y < 10−6 would
lower this bound to zedge . 0.3 or a radius of 1 Gpc.
These constraints are consistent with the very small Hub-
ble bubble proposed in Ref. [19], with H0 −He0 ∼ 0.1H0

and zedge >∼ 0.025.
The observed SNe data can be compared with our

model Hubble diagram to further constrain void param-
eters. Using the SNe data [20, 21] compiled in Ref. [22],
we computed the likelihood of Ω0 and zedge. The best-
fit parameter combinations give χ2 = 207 for the 192
SNe magnitudes (within 3σ of the best-fit ΛCDM model
based on a ∆χ2 test, for a family of models with a suf-
ficient number of parameters to encompass both Λ and
the void). Voids which explain the observed Hubble di-
agram have low density and large size, zedge ∼ 1 (radii
∼ 2.5 Gpc). However, as shown in fig. 3, combining the
SNe data with current limits on u (χ2 = 225, 250 for 191
degrees of freedom), we find that nearly all such voids are
ruled out. These specific constraints only apply to the
Hubble bubble class of models, which also suffers from
other flaws not mentioned here. This test will be applied
to more general and more realistic void profiles.

An improvement in the bound on u by an order of
magnitude may confirm or refute a wider variety of such
voids as an explanation of the dark energy phenomena.

Yet, the u-distortion test presented here is more general
than the question of dark energy. Future pursuit of this
test will help improve our view of the universe on the
largest scales.
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